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Nonlinear effects on the refraction of water waves are discussed. The existence of 
conjugate solutions for wave fields, one set of which corresponds to the ‘anomalous’ 
refraction solutions of Peregrine & Ryrie (1983) provides the stimulus for consideration 
of jumps in wave-field properties. Just such a jump is described by Yue & Mei (1980) 
for a case where near-linear waves are reflected with small deflection by a rigid wall. 

Wave jumps between conjugate solutions appear to be possible for finite-amplitude 
wavetrains. These are examined and the structure of wave jumps in the near-linear, 
small-deflection case is elucidated. They have a structure directly analogous to that 
of an undular bore on shallow water with surface tension (‘hydraulic analogy’). 
Numerical results of Yue & Mei (1980) provide valuable guidance and confirmation. 

Linear waves are reflected at a caustic, and can be described with Airy functions. 
Although equivalent weakly nonlinear solutions exist, the results from reflection by 
a wall and from use of the hydraulic analogy show that, unlike the caustics of linear 
theory, nonlinear caustics should not be considered in isolation. Caustic cusps, or wave 
focusing, must be considered, unless bed topography has discontinuities. A qualitative 
discussion of focusing based on the behaviour of unsteady waves in the hydraulic 
analogy shows that wave jumps can be expected. The relationship to linear theory 
is also put in perspective. Nonlinearity causes the linear rays to split into two sets 
of characteristics. The splitting of a ray focus leads to two wave jumps. 

Consideration of the case of a semi-infinite beach shows that anomalous refraction 
is most unlikely to occur because there is an offshore influence of the beach on the 
wave field which changes the incident wave conditions to prevent anomalous 
refraction. 

1. Introduction 
The refraction of finite-amplitude water waves has been studied in a series of papers 

using ‘numerically exact ’ solutions for plane periodic water waves (Peregrine & 
Thomas 1979; Stiassnie & Peregrine 1980; Peregrine 1981 ; Ryrie & Peregrine 1982). 
These all describe examples where variables may vary in one space direction only, 
so that the governing equations for the averaged motion (Stiassnie & Peregrine 1979) 
can be integrated. Many of the solutions presented appear to be perfectly satisfactory, 
satisfying the assumptions that wave properties change slowly, except for the 
steepest waves where the maxima of the waves’ integral properties lead to singularities 
which are sensibly interpreted as being an indication of wave breaking (for a 
discussion of this assumption and exceptions for long waves see Stiassnie & Peregrine 
1980). 

Other solutions are less satisfactory and have singularities a t  wave steepnesses well 
below the maximum, and a second solution branch is found. In  the earlier works this 
always occurs in the neighbourhood of a caustic of linear theory, and the physical 
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existence of the second solutions appeared doubtful ; especially since no account is 
taken of waves reflected from the caustic region. However, in Ryrie & Peregrine (1982) 
the second solution appears to be appropriate in an apparently well-defined problem 
and has behaviour which differs qualitatively from that of linear theory. This 
‘ anomalous ’ refraction is discussed in Peregrine & Ryrie (1983), where it is shown 
to be similar to the pairs of solutions near caustics and the properties of these 
‘conjugate’ solutions are presented. Here the discussion is taken further and the 
problem that gave anomalous refraction is shown to be ill-posed. 

This paper has two major topics: jumps in wave properties between conjugate 
solutions are described and their implications for wave propagation near linear 
caustics is investigated. A particularly helpful example is given by Yue & Mei (1980, 
hereinafter referred to as YM). In that paper the existence of wave jumps is recognized 
for waves incident almost parallel to a wedge of small angle. The solutions computed 
by YM involve two approximations: (i) that the waves are only weakly nonlinear 
and (ii) that the waves are only deflected through a small angle. However, diffraction 
effects are retained, as in a parabolic approximation, and are important. 

Wave jumps for waves of finite amplitude and for finite changes of wave direction 
must always be oblique to the wave-propagation direction and can only exist for a 
modest range of angles. Details of amplitude and jump direction are given for the 
case of deep water waves, and for solitary waves, incident on an inclined half plane 
(i.e. the problem analysed by YM). The solitary-wave case is the Mach reflection 
discussed by Miles (1977b). 

The structure of the wave jumps that appear in YM’s solutions is analysed in $3. 
It is noted that the modulations that occur are similar to an undular bore and 
solutions of the governing nonlinear Schrodinger (NLS) equation support this view. 
In particular, it is shown that the NLS equation can be cast into a form analogous 
to Boussinesq’s equations for shallow water waves. This is called a ‘hydraulic 
analogy ’ in the subsequent discussion, in order to distinguish between the three levels 
of waves that are considered: (i) the original wavetrain and its development, (ii) the 
modulated envelope of those waves and (iii) the long-wave solutions of the Boussinesq 
equations which are used to describe the qualitative properties of solutions of the NLS 
equation. 

The interpretation of YM’s solutions is relevant to the reflection of waves which 
is expected to occur in the neighbourhood of a linear caustic. A local nonlinear 
solution exists in which a Painlev6 transcendent replaces the Airy function of linear 
wave theory. However, YM’s solution for a reflecting plane indicates that these 
solutions are inappropriate and it is necessary to consider the initiation of a caustic. 
Caustics normally originate in pairs from cusps, which represent an imperfect focus 
of waves. 

Use of the hydraulic analogy makes it a simple matter to discuss the qualitative 
structure of the wave field near a focus. The nonlinear terms contribute to a 
defocusing (the self-focusing NLS equation has been studied more in the past, see 
Whitham 1974, Q 16.3). For a sufficiently strong focus a wave jump can be expected 
to occur each side of the focus and no identifiable caustics arise. This implies that 
the wave field can differ considerably from that of linear wave theory. The general 
behaviour is similar to that of non-dispersive waves, where both theoretical and 
experimental results are known for sound waves (Cramer & Seebass 1978 ; Sturtevant 
& Kulkarny 1976; Fridman 1982). Together with the analogy between gasdynamics 
and shallow-water flows, this suggests that the qualitative picture may be unchanged 
throughout a surf zone on a beach. 
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In $6 anomalous refraction, which is analogous to subcritical hydraulic flow, is 
discussed. Some sort of ‘ control ’ (such as occurs a t  a weir or lake on a stream) is needed 
before it can be realized. The implication of this for waves approaching a beach at  
a very oblique angle is that the wave conditions offshore are changed to reduce the 
steepness of waves approaching the beach. 

The concluding discussion assesses the problems involved in reproducing these 
various effects in a laboratory, or observing them in nature. Indications are given 
of the further work necessary to use these results in practical wave prediction, and 
for determining their range of applicability. It is noted that the wave field must vary 
slowly since experiments in which waves focus in a region with dimensions of the order 
one wavelength show a strong transfer of energy to the second harmonic. 

2. Wavejumps 
The first papers to discuss jumps of water-wave properties concerned the undular 

bore which occurs in shallow water. Benjamin & Lighthill (1954) show that, within 
the cnoidal-wave approximation which is appropriate to the undular-bore problem, 
the only one-dimensional transition in wave properties for an irrotational flow which 
conserves mass, momentum and energy is between a uniform supercritical flow and 
a solitary wave. The similarity between the leading wave of an undular bore and a 
solitary wave has been remarked on by several authors. 

The possibility of wave jumps is discussed in Whitham’s (1965) first paper on the 
averaging of nonlinear wavetrains (see Whitham 1974, $15.4). (The term ‘jump’ is 
used here rather than ‘shock’, as used by Whitham, since the latter term describes 
a well-defined phenomenon in gasdynamics, whereas the former term is commonly 
used in many contexts for a sharp change in the value of physical and/or mathematical 
quantities.) In agreement with Benjamin & Lighthill (1954), Whitham finds that 
jumps for unidirectional waves are not possible unless some constraint is relaxed. 

However, the nonlinear averaging method leads to solutions which develop sharp 
gradients of wave properties suggesting that jumps might allow a uniformly valid 
solution. Howe (1968) discusses in detail how one such solution might be extended 
by inclusion of an oblique wave jump. Energy and momentum conservation are used 
to locate Howe’s jump, but a phase discontinuity exists across it. Consideration of 
that example in the light of the results developed in this paper suggests that, if 
diffraction effects are neglected, two jumps must arise from the region of focused 
wave energy and these would satisfy all the conservation equations. In practice, it 
would probably be difficult to discern a jump in most experiments of that type. 

Ostrovskii (1968) gives a relatively full description of wave jumps for a one- 
dimensional system of modulation equations which is equivalent to a generalization 
of the nonlinear Schrodinger equation. Jump structure is analysed for dissipative 
cases. Although $3 parallels Ostrovskii (1968), a conservative system is being 
considered and we proceed to a further interpretation of wave jumps. 

The evaluation of properties of very steep water waves by Schwartz (1974), 
Longuet-Higgins (1975) and Cokelet (1977) shows that energy, mass and momentum 
properties of steep waves are not single-valued functions of wave properties. The 
consequent possible jumps are recognized in Longuet-Higgins & Fenton’s (1974) 
discussion of high solitary waves which show the same behaviour. Chen & Saffman 
(1980) show that there is a bifurcation of the wavetrain solution a t  the maximum 
phase velocity. The jumps and transitions of wave properties in this region are not 
discussed here since in practical applications waves of this steepness will rapidly 
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break. See Longuet-Higgins’s (1978u, b )  analysis of deep-water wave stability and 
the reviews by Schwartz & Fenton (1982) and Peregrine (1983~) .  The conclusions of 
Benjamin & Lighthill (1954) are confirmed by results from more accurate wave 
solutions. 

Other water-wave jumps have been recognized. Chin (1979) describes wave jumps, 
but uses unrealistic values in detailed examples so that no firm conclusion can be 
reached from his study. Jumps in the propagation direction of solitary waves are 
analysed independently by Reutov (1976), Ostrovskii & Shrira (1976) and Miles 
(1977~).  These are treated in a similar manner to such jumps on shock waves; see 
‘shock-shocks’ in Whitham (1974, $8.6). Miles’s (1977a, b )  study of intersecting and 
‘resonantly interacting’ solitary waves provides the detail of such jumps (Mach 
reflection); this shows a weak reflected wave which is consistent with the jump 
structure discussed in the next two sections. 

Yue & Mei (1980) give numerical solutions for near-linear waves incident on a wedge 
of small angle. They recognize that their solutions show wave jumps at a small angle 
to the wave direction. The position of the jump and the change in wave amplitude 
are shown to be consistent with a jump model. Their approximation is restricted to 
small changes in the direction of wave propagation. The conjugate solutions 
discovered for finite-amplitude waves, discussed by Peregrine & Ryrie (1983) allow 
an extension to finite angles and amplitudes. 

In  its simplest form a wave jump consists of a plane across which wave properties 
change between two uniform values. For such a jump to be possible all appropriate 
quantities must be conserved across the jump. Discussion here is in terms of water 
waves and steady wave fields, but extensions to other types of waves and to steadily 
moving jumps is possible. 

There are two ‘kinematic ’ constraints on a jump. The incident waves force the wave 
field on the other side (except for any example with zero energy flux across the jump). 
Thus the wave frequency and the component of wavenumber along the jump are 
conserved. Whitham (1965, 1974) suggests that these requirements might be relaxed, 
probably since only one-dimensional waves are considered, but except for the possible 
excitation of waves with frequencies and/or wavenumber components which are some 
integer multiple of the incident values, the constraints of geometric and time 
periodicity seem paramount. The physical constraints are that mass, momentum and 
energy are conserved; but these might be relaxed if there is some reflection (see $4). 

For water waves, there are six conserved quantities: 
(i) w ,  wave frequency relative to the jump; 
(ii) k,, wavenumber component along the jump; 
(iii) q,, total mass flow across the jump; 
(iv), (v) S,,, S,,, total flux of momentum across the jump; 
(vi) F,,  total flux of energy across the jump; 

Seven quantities are needed to define conditions on each side of the jump. They 

w ,  wave frequency; 
(k,, k,) = k, wavenumber; 
(lJl, U,) = U, mean velocity; 
D, mean depth; 
a ,  wave amplitude. 

where Ox, is taken normal to the jump and Ox, is along the jump. 

are 

If conditions are known on one side of the jump then the six equations arising from 
the conserved quantities supplemented by the dispersion equation are sufficient, in 



FIGURE 1. 

Wave jumps and caustics in water-wave propagation 

Sketch of wave jump, continuous lines represent wave crests. No representation 
of the structure of the jump is included. 
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principle, to determine conditions on the other side of the jump. These equations, 
or their equivalent, are solved in refraction problems where the propagation medium 
and wave properties only vary slowly in the Ox, direction, though energy conservation 
is usually replaced by wave-action conservation (e.g. see Ryrie & Peregrine 1982). 

The case of deep water waves is a limiting case where the velocity and mean depth 
are specified, so the mass and momentum conservation equations cannot be used. To 
be consistent, a large-scale two-dimensional mean flow should be incorporated in some 
larger-scale analysis (e.g. see McIntyre 1981). Further study is required, but it is 
unlikely that simpler analysis which omits such a mean flow will have significant 
errors if wave action is substituted for wave energy. 

It is not enough to postulate that solutions of the conservation equations exist. 
It must be shown that they have two solutions: one for each side of the jump. 
Peregrine & Ryrie (1983) present such conjugate solutions for zero mean flow. The 
results show that stationary jumps with no mean flow are limited to a certain range 
of obliquely incident waves by the fact that water waves have a maximum steepness. 

A sketch of a wave jump, showing wave crests and lines parallel to k, is given in 
figure 1. The arrows indicate a progression from side b (for before) to side a (for after) 
with waves on side a propagating more nearly parallel to the jump. 

The analysis leading to conjugate solutions gives no indication of the sense of the 
jump. An equivalent to entropy in a shock wave or energy dissipation in a hydraulic 
jump would be useful. However, the study of jump structure in $3  shows that for 
near-linear waves with a small angle of deviation, the propagation properties of 
modulations clearly show that waves incident on a jump are lower than those after 
the jump, in agreement with the sketch. It is reasonable to suppose that the same 
result is true when those approximations are relaxed, although no method is available 
to calculate jump structure. 

A simplified representation of the wave field described by YM is given in figure 
2. Since there are no wave-jump solutions with wave propagation normal to a jump, 
this configuration appears to be the simplest realistic possibility for jump creation. 
The waves are incident from the left on a half-plane or wedge face inclined at an angle 
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Figure 2. Schematic diagram of a wave field, with wavenumber k,, incident on a rigid 
half-plane, or wedge at an angle W ,  forming a wave jump at an angle J. 
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FIQURE 3. Solutions for wave steepness before and after deep water waves meet a jump of angle 
J caused by a wedge of angle W. Numerically accurate periodic wave solutions have been used. 
The dotted lines show the relation between J and W for initial steepnesses of 0.1 and 0.2 from the 
approximation of Yue & Mei (1980). 

W to the incident wave direction. The edge of the half-plane induces the formation 
of a jump at  an angle J to the incident wave direction. The waves behind the jump 
must travel parallel to the plane if they are to be represented by a single wavetrain. 

For a simplified deep-water wave analysis, conservation of wawe action and the 
along-jump component of wavenumber can be used to find the jump angle J and 
wedge angle W after specifying the wave steepness before and after the jump. Results 
are shown in figure 3. YM's analysis corresponds to the lower left-hand corner of the 
diagram, two curves obtained by using their approximate relation (4.21) are included. 

For waves in finite depth of water, the configuration of figure 2 is not as 
simple as i t  looks. The mass-flow condition normal to the jump together with the 
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FIGURE 4. Results from Miles’s (1977b) near-linear analysis of Mach-stem reflection of solitary waves 
interpreted as if due to a wave jump at a wedge. The wave heights are in units of the undisturbed 
depth. 

impermeability of the wedge mean that the current and wavenumber must both have 
the same orientation after the jump. This is an extra constraint on the jump and an 
incident mean flow is needed to ,completely satisfy the jump conditions. However, 
since the magnitude of the flow involved is the same as the mass flow associated with 
the wavetrains, differences from the simple picture of figure 2 are likely to be slight. 
For example, in the small-deviation, near-linear approximation of YM, wave-induced 
currents are implicitly included. The relatively large width associated with the jump 
structure causes such details to have little practical importance. 

The limit of very long waves is the solitary wave. The configuration corresponding 
to  figure 2 and to YM’s solutions is that of Mach reflexion (Miles 1977b). The Mach 
stem can be identified with the region between the jump and the wedge. Figure 4 
gives results corresponding to  those of figure 3, derived from Miles’s results. 
Funakoshi (1980) has confirmed with numerical computations that for finite angles 
the small-angle results of Miles are a good approximation to solutions of Boussinesq’s 
equations. No finite-amplitude solutions are available. 

In YM’s solutions the wave crests along the wedge are not, perpendicular to the 
line of the wedge. This is inconsistent with an impervious boundary. YM show that 
the discrepancy is O(e3),  and hence one may expect that  if the approximation is 
carried out to this higher order the discrepancy is likely to be eliminated. 
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3. Structure of wave jumps 
The structure of wave jumps can be found by improving the accuracy of the 

solution to resolve shorter lengthscales. For the case of jumps at a small angle to 
the incident and transmitted waves this is done in YM for near-linear waves. YM 
derive a nonlinear Schrodinger (NLS) equation for these water waves. The same 
equation can be derived in other ways and for other wave systems (see e.g. Peregrine 
& Smith 1979, $56 and 7;  Grimshaw 1981). 

The waves are assumed to be steady with the primary propagation direction being 
Ox.  The nonlinear effects on the velocity of wave propagation and the rate of variation 
of wave properties in the transverse, Oy, direction are assumed to be of the same order 
of magnitude, i.e. a2/ay2 = k20(a2k2) ,  with a longer modulation in the x-direction, 
a / a x  = o(azk3) .  

The NLS equation can be written in dimensionless form as 

2iA, + A,, - KIAI2A = 0, (3.1) 

where T = k ,x ,  Y = k, y, and k,  is the wavenumber of the basic wavetrain. The 
constant K ,  which is positive,t depends on the relative water depth and on exactly 
what measure of the amplitude is denoted by A, which is a complex function of ( Y ,  T). 
The variable T is used here because the modulations are compared with an analogous 
time-varying case. Equation (3.1) can be derived directly by simplification of the 
Davey & Stewartson (1974) equations : put terms with 6-derivatives negligible 
compared with the others in their equation (2.15). 

For gravity water waves K is positive for all depths and equation (3.1) is that  form 
of the NLS equation which has stable solutions of uniform amplitude : 

A = Aoe-$iKIAoIZT. (3.2) 

Ostrovskii (1968) demonstrated that wave jumps are possible for (3.1) between 
uniform solutions and that they have an oscillatory character. We interpret these 
oscillations in two ways. 

The numerical solutions of YM clearly show the structure of their wave jumps, see 
YM figures 3, 4, 6 and 7 .  Transverse sections of the wave envelope in YM figure 4 
show that the jump looks like an undular bore propagating away from the wedge. 
Alternatively the detailed view of water surface elevation in YM figure 7 emphasizes 
the similarity with Mach reflection of a solitary wave and the region of transition 
between the two uniform wave regions can then be identified as a region with waves 
which have partially reflected off the higher waves (the Mach-stem region). In  this 
section we confirm the undular bore analogy, and in $4 consider implications for the 
reflections of nonlinear waves. 

That wave jumps have modulations preceding them is consistent with the property 
of the linearized modulations that group velocity is faster than phase velocity. There 
is no upper limit to the group velocity; however, the modulation equations are not 
valid for rapid modulations. In  undular bores the longest wave, which adjoins a 
uniform level, grows steadily and becomes very similar to a solitary wave. Here 
similar behaviour can be seen for the largest modulation. 

t The sign of K is crucial to the discussion of wave jumps and to the rest of the paper. For general 
near-linear wave systems, its sign corresponds to the sign of HIG,, in the notation of Peregrine & 
Smith (1979, p. 347). For fully nonlinear systems similar behaviour might be found in cases where 
long perturbations have real characteristics. 
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The analogy with an undular bore can be carried further by rewriting equation (3.1) 
in terms of real variables defined as follows : 

A = aei*. h = a2, 

The resulting equations are 
hT+ (h’U)y = 0, 

These or similar equations have often been likened to those of gasdynamics, but a 
comparison with shallow-water equations is more instructive. First note their 
interpretation as modulation equations. Equation (3.4) is a ‘small-angle ’ approxim- 
ation to the linearized wave-action equation, and (3.5) is a differentiated version of 
the dispersion equation with +Kh, representing the near-linear terms. The right-hand 
side is an approximation to diffraction effects on dispersion which may be more 
readily recognized when it is in the form (ayy/2a),. 

I n  the shallow-water analogy, h ( Y , T )  corresponds to water depth, v ( Y , T )  to 
velocity, (3.4) to  the mass-conservation equation, and (3.5) to  the momentum 
equation with #K corresponding to  the acceleration due to gravity and an unusual 
right-hand side. Clearly if variation with Y is relatively slight the diffraction term 
of (3.5) may be neglected and the finite-amplitude shallow-water equations result.? 
If wave jumps are considered in the simplified, discontinuous, form as in $2, there 
is it discrepancy between bores in shallow-water flow and the jumps obtained in this 
context. I n  the case of bores i t  is mass and momentum which are conserved through 
a jump, whereas here i t  is wave action and frequency which correspond to mass and 
velocity respectively. However, this does not affect the analogy given below. 

Perturbations about a uniform wavetrain h = 1 (the initial amplitude is included 
in the parameter K by YM) given by h = 1 + q  lead to a first approximation to the 
diffraction term of hyyy. This is a common form for the dispersive term in 
Boussinesq’s equations for weakly dispersive shallow-water waves (e.g. see equation 
(13.9) of Whitham 1974). This weakly nonlinear dispersive approximation will be 
termed a ‘hydraulic’ analogy, to distinguish its long water-wave solutions from both 
the water waves of the original problem and their wave-like modulations. As in the 
usual derivations of Boussinesq’s equations, the nonlinear terms on the left-hand side 
are retained, even with the linearized form of the diffraction term as long as the 
modulations satisfy 

(3.6) 
a 2  

~ = O ( r ) .  a ~2 

The sign of the dispersive term in the hydraulic analogy is such that surface tension 
must be dominant, e.g. see Korteweg & de Vries (1895), and the coefficients of the 
analogous Boussinesq equations agree exactly for depth D ,  surface tension T and 
density p if 

For example, if K = 1, the analogy is with long waves on water of 3 mm depth. 
Thus, unless modulations are O( I ) ,  solutions for the corresponding ‘hydraulic ’ 

t Note that negative values for K correspond to water lying under a rigid boundary with a free 
surface below. Solutions for K < 0 have a completely different character which is not investigated 
here (but see Peregrine 1983b). 

15 F L M  136 
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problem may be used. If initial conditions correspond to a smooth modulation 
between two uniform conditions propagating along wave crests it is equivalent to a 
long hydraulic wave. The resulting steepening (which is analysed for the NLS 
equation by Ostrovskii 1968) eventually leads to the rate of modulation becoming 
great enough to  ‘activate ’ the diffraction term. The corresponding development of 
an undular bore has been studied for the hydraulic case, numerically by Peregrine 
(1966) and Fornberg & Whitham (1978) and analytically by Gurevich & Pitaevskii 
(1973), who use Whitham’s method of averaging nonlinear waves (the same approach 
could be used here). Although these papers describe the gravity-dominated hydraulic 
waves, all the solutions are readily transformed to describe the surface-tension- 
dominated case. 

The initial wave of the undular bore grows until i t  is like a solitary wave of about 
twice the initial change of level. Similar behaviour can be expected for the final 
modulation in a wave jump, except that  for large changes in modulation it is limited 
by the maximum modulation deepening to  zero. If this latter limit is attained the 
upper level of the jump will stop propagating, since the velocity of the limiting 
solitary modulation is zero. YMs results do not extend far enough to show this, but 
their figure 7 does show that the steeper wavetrain spreads more slowly as x increases. 

Despite the fact that  the hydraulic analogy is not precise for large modulations of 
waves with diffractive effects, the qualitative comparison holds good. Both these 
modulations and surface-tension-dominated water waves have velocities which 
approach zero as the trough of the modulation or wave approaches zero. Similarly 
for large peaks the ‘restraining’ effects of the diffraction term and surface tension 
are qualitatively similar. 

4. The wave field near caustics 
From considerations of a single nonlinear wavetrain Peregrine & Smith (1979) show 

that caustics fall into two classes. We only consider the R-type caustics here ; S-type 
caustics have K < 0. 

I n  the neighbourhood of a caustic position, the single-wavetrain approximation 
has a singularity where two solution branches merge. For example see Peregrine & 
Thomas (1979), Peregrine (1981), Ryrie & Peregrine (1982) and Peregrine & Ryrie 
(1983). These two branches are conjugate in the sense that a wave jump can occur 
between them. However, that  particular wave jump is most unlikely, as is now 
explained. 

According to linear theory waves reflect at a caustic ; in a ray representation rays 
touch caustics. Thus for weakly nonlinear waves i t  is reasonable to  expect the linear 
caustic line to act as a reflector and to  correspond to the plane reflector in YM’s 
example. In  the case of the reflecting plane no steady state is reached, the region of 
steep waves continues to grow in extent, and these waves have no component of 
wave-action flux towards the reflector. The wave field near a linear caustic is likely 
to have the same character. There are solutions for waves near a caustic with no 
component of wave-action flux towards the caustic, these waves also have ‘ anomalous ’ 
properties relative to  the caustic line and hence can be conjugate to the incident waves 
across a wave jump (see e.g. figure 2 of Peregrine & Thomas 1979 (delete the last 5 
words of the caption) and figures 6 and 7 of Ryrie & Peregrine 1982). However, the 
wave jump would have to be a t  an  angle to  the caustic line since only the linear 
zero-amplitude incident wave is conjugate to  the zero-wave-action-flux component 
solution. 
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There is a local steady solution for near-linear waves in the vicinity of a linear 
caustic, i t  involves a PainlBv6 transcendent in place of the Airy function Ai (x) of 
linear theory. Peregrine & Smith (1979) introduce the Painlkv6 transcendent in this 
context, Rosales (1978) and Miles (1980) give details of its properties, and i t  has a 
region, between asymptotic-oscillatory and exponentially decaying regions, which 
corresponds to waves propagating parallel to the caustic. The conclusion to  be drawn 
from YM’s solutions is that  this steady solution is only obtained asymptotically some 
distance along the caustic if a t  all. Kirby & Dalrymple (1983) present a computed 
solution which shows the initial development of a wave jump near a linear caustic. 

The wave field along a caustic thus varies with distance from the initial point of 
the caustic. 

I n  a wave field without discontinuities of the refracting medium or of the initial 
wave fronts, caustics begin in pairs a t  cusps of caustics, which represent imperfect 
focuses of the waves. Hence i t  is necessary to consider focusing. 

5. Focusing of nonlinear waves 
The focusing of waves satisfying the NLS equation has been studied in the context 

of nonlinear optics (e.g. Akhmanov, Sukhorukov & Khokhlov 1966). The effect of the 
nonlinear term is such that there is either ‘self-focusing ’ or ‘defocusing ’ according 
to whether K is negative or positive respectively in the NLS equation (3.1). This 
difference depending on the sign of K corresponds also to the S and R types of caustics 
respectively (Peregrine & Smith 1979). Most attention has been given to the 
self-focusing case; we make use of the hydraulic analogy to  describe the defocusing 
case appropriate to gravity water waves. 

The hydraulic flow corresponding to a wave field directed towards a focus has water 
converging on a stagnation point. The effect of gravity (nonlinear dispersion for the 
waves) is to diminish the height of the hydraulic flow at the stagnation point and 
cause i t  to flow away again; this is the defocusing effect. The resulting outgoing flow 
has the form of a long wave of elevation which has a tendency to  steepen and then 
form undulations. The speed of steepening and the resulting occurrence of an  undular 
wave jump depends upon the wave steepness, the degree of focusing and the scale 
of the focusing region. Figure 3 of Stamnes et al. (1983) shows good examples. 

It is instructive to compare the ray approximation to linear theory with the 
hydraulic analogy where the diffraction terms are ignored. They are equivalent 
approximations since ray .theory gives the position of caustics and their cusps, but 
fails in their neighbourhood, and similarly the finite-amplitude shallow-water 
equations give the position of the wave jumps but not their structure. 

In  the hydraulic analogy, particle paths correspond to lines parallel to the 
wavenumber vector k (rays in linear theory). Figures 5 (a, b )  give sketches of the linear 
rays a t  a caustic cusp and the particle paths in a nonlinear hydraulic flow with a 
representation of wave jumps spreading away from the focusing region. The figure 
gives an impression that waves from the right, say, of a focus form a wave jump on 
the right side of the focal region instead of a caustic on the left side. Figure 5 ( b )  is, 
however, misleading, in the hydraulic flow information propagates along character- 
istics, and it’s these which are equivalent to the rays of linear theory, not the 
wavenumber direction. As figure 5 ( c )  shows, each set of characteristics forming a jump 
comes from the same side as the rays forming the corresponding caustic in the linear 
case. That is, the effect of nonlinearity is to split the linear characteristics and also 
to split a cusp of caustics into a separate cusp of the envelope of each family of 

15-2 
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FIQURE 5 . (a )  Rays a t  a cusp of caustics, linear theory. (6) Sketch of the particle paths of the 
hydraulic analogy a t  a focus, jumps included with no structure. The lines correspond to lines parallel 
to k, the wavenumber in the wave field. (c) Sketch of characteristics of the wave field, and its 
analogous hydraulic flow, in the case where diffraction terms, and jump structure are ignored. 
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characteristics. Once the jump has formed, its position is determined by both sets 
of characteristics. 

The further development of wave jumps or caustics depends on a larger portion 
of the wave field and can vary substantially. This subsequent development of the 
wave field and clarification of parameters appropriate to near-linear focusing requires 
considerable further work. 

6. Anomalous refraction 
In  a typical water-wave refraction problem the ‘initial ’ wavetrain is specified, e.g. 

wave steepness, period and direction may be specified for waves incident on a beach. 
Normally this is a satisfactory procedure. However this is not satisfactory in the cases, 
such as waves incident almost parallel to a beach, where anomalous refraction occurs. 
The ‘small-angle ’ near-linear approximation of the NLS equation is appropriate to 
such a case, and there is no loss of generality in considering the constant-depth case. 

The analysis which leads to  anomalous refraction includes an assumption of long 
modulations so that an approximation which ignores the diffractive terms on the 
right-hand side of (3.5) is also appropriate. The resulting, shallow-water equations 
have real characteristics, and it is clear from the general theory of hyperbolic 
equations that boundary conditions involving a complete specification of the wave- 
train are only properly posed when both sets of characteristics proceed into the region 
of integration. It is easily seen that anomalous refraction solutions occur only for 
ill-posed problems. 

I n  the case of a straight beach full specification of the incident wavetrain is 
incorrect when characteristics propagate away from the beach. These characteristics 
propagate offshore and modify the wave field so that i t  arrives in the area of the beach 
with properties appropriate for normal refraction, in which all characteristics 
propagate towards the beach. This behaviour is illustrated in figure 6, where the beach 
starts a t  x = 0, the incident waves being ‘guided’ there by a vertical wall. In  x > 0 
there is a ‘ simple-wave ’ fan of offshore-propagating characteristics through which 
the waves are turned more nearly normal to the beach. 

There is a direct analogy with sub- and supercritical flows in channels and the 
upstream influence of any obstacle in a subcritical flow. The anomalous refraction 
ca.se corresponds to  subcritical flow. 

These results also apply to finite-amplitude waves. The problem of ill-posedness 
of nonlinear wave-propagation problems is discussed in Hayes ( 1973). Deep-water 
waves correspond to the case of Hayes’ (1973) $4, and finite-water depth is introduced 
in $5 .  Taking the simpler case of $4, we are concerned here with steady wave 
modulations, which in Hayes’s notation means that 

a+n .c  = 0. (6.1) 

This is just the Doppler relation between the phase velocity v in the frame of reference 
moving with the basic group velocity c relative to the medium ; n is a unit vector 
in the direction of the modulation wavenumber. I n  terms of the Hamiltonian %(A, k ) ,  
where A is wave action, (6.1) is 

which is an equation for n. 
It may be seen from Hayes’s equation (4.13) that this equation for n defines the 

critical direction, relative to k ,  for the normal to  a (mathematical) boundary. One 
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FIGURE 6. Representation of waves meeting a beach which starts at x = 0. The continuous lines 
are parallel to the wavenumber. The broken lines are the fan of characteristics in a simple wave. 

side of the critical direction gives boundary lines on which the wave field may be 
specified and the solution problem is well-posed, and a boundary on the other side 
of the critical direction the problem is ill-posed. 

Equation (6.2) is more directly related to the near-linear case described in 
connection with figure 6. The group velocity of modulations is given by Hayes (1973) 

The modulations propagate perpendicular to n, along the lines of constant phase, and 
are thus directly analogous to the near-linear characteristics. 

Further, (6.2) may be squared and rewritten as 

which corresponds to 

using the relations for wave-action flux B and frequency given by Hayes, and noting 
that A is a function of ak for given k ; the angle between k and n is ~ I I  - 8. The dividing 



Wave jumps and caustics in water-wave propagation 449 
line in the (ak, @-plane between regular and conjugate solutions is given by 

(6.7) 

in Peregrine & Ryrie (1983). In  that restricted case i t  is straightforward to show the 
equivalence of (6.6) and (6.7). 

For finite water depth there are two more characteristics with velocities close to 
that of long water waves, (gh?. This long-wave velocity is greater than other 
perturbation velocities unless the primary wavetrain is composed of long waves. 
Excepting this latter case, Hayes’ (1973) analysis for these waves implies that the 
wave-field modulations are qualitatively similar to  those of deep-water waves. 
However, due account must be taken of other boundaries in determining the 
distribution of mean depth and current. 

Note that for both finite-depth and deep-water waves the restriction to steady wave 
fields implies that we exclude from consideration the unsteady modulations considered 
by Hayes and others, and known to be unstable in many cases. 

7. Discussion 
The entire development of this paper is theoretical, yet the predictions for reflection 

and refraction are such that the effects should be observable in experiments. 
Experiments on waves incident a t  a small angle to a plane are described by Berger 
& Kohlhase (1976). The experiments are compared with linear theory, and show 
reasonable agreement. It is possible to  discern some lessening of amplitude a t  the wall 
and flattening of the crests perpendicular to the wall for the steeper waves as one 
would expect from YM’s solutions. However, the oscillations in the measurements 
are of the order 25 yo so that any deductions from their results are doubtful. 

There are two major difficulties in confirming any of the present results with 
experiment. One is the problem of scale. Since we describe modulations which are 
long compared with the wavelength, hundreds of wavelengths are needed and this 
means a large physical scale is necessary to avoid significant dissipative effects. A 
comparison of Melville’s (1980) experimental measurements of the Mach reflection 
of a solitary wave with Funakoshi’s (1980) numerical modelling shows that Melville 
was limited in the scale of his experiments. Similarly, Whalin’s (1972) experimental 
focusing of water waves by refraction led to a focal region which was of the same 
scale as the wavelength, in which energy was transferred to a free second harmonic. 

The other problem is that the waves should be steady and periodic. Even if waves 
are generated without any free harmonics, they are vulnerable to instabilities as they 
propagate. The Benjamin-Feir instability is well known to affect waves in water 
depths with kD > 1.36, and the experiments of Su et al. (1982a, b )  and theory of 
McLean (1982) show that even for ICD < 1.36 instabilities can grow. However, by 
suitable choice of water depth and wave steepness it should be possible to avoid these. 
In  this theoretical account all time dependence is omitted; it would be valuable to 
extend this work to  describe the reflection and refraction of modulated incident 
waves. 

The physical existence of the finite-amplitude wave jumps described in 92 and 3 
has yet to be demonstrated. Experiments and observations are only available for 
solitary waves and the related area of gasdynamics. The nonlinear equations differ 
in these cases from those €or waves on deep or moderate depths of water. The primary 
difference is that, in shallow water, wave speeds increase linearly with amplitude, 
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whilst in deeper water the increase is with the square of the amplitude. However, 
as has already been noted by comparisons between wave jumps and Mach reflection, 
the qualitative effects are similar. Presumably these primarily depend on the increase 
of wave speed with amplitude. 

The simpler type of approximation, which describes wave jumps but not their 
structure, has been developed independently for solitary waves by Reutov (1976), 
Ostrovskii & Shrira (1976), and Miles (1977~) .  Examples of the refraction of a solitary 
wave have been discussed by Kulikovskii & Reutov (1976, 1980). 

I n  the analogous area of weakly nonlinear acoustics, experiments on focused waves 
described by Sturtevant & Kulkarny (1976) show features described here in $ 5 .  
Corresponding to our wave jumps, ' shock-shocks ' are observed. The clearest summary 
is in their figure 18 (their photographs include the complications of diffraction from 
the edge of their focusing reflector and the optical effects of heated gas). For 
theoretical aspects see Whitham (1974, chap. 8) and Cramer & Seebass (1978). 

The qualitatively similar behaviour of solitary waves and acoustic waves encourages 
the hope that development of the approaches used here might even have some value 
through regions of beaches where waves are breaking. The bores that often develop 
once waves break are analogous to  acoustic shock waves. Walker (1976) describes 
focusing refraction in an example where waves break, and his comparison with linear 
theory shows nonlinear defocusing. 

The limits of the approximations have not been well defined, although rough 
estimates can be made. For example, in deep water one might expect ale z 0.2 to be 
a reasonable upper limit on steepness for the NLS equation. Very little information 
is available about the maximum reasonable modulation rate. 

The verification of any refraction theory for natural waves on natural beaches is 
difficult since even in the best circumstances the incident waves are of varying 
amplitude. The effects of such variation have yet to  be worked out. Of all the 
phenomena described here, the offshore influence for waves almost parallel to  a beach 
is likely to be the least difficult to observe. 

The major points of this paper are that (i) wave jumps may exist a t  a finite angle 
to finite-amplitude water waves; (ii) for near-linear waves with small angles of 
deviation wave jumps are similar in structure to  undular bores and involve partial 
reflection of wave energy; (iii) the analogy between the NLS equation (3.1) and the 
flow of water a few millimetres deep allows a qualitative description of nonlinear 
refraction phenomena which includes a description of focusing. 

The author acknowledges the award of a Green Scholarship from the La Jolla 
Foundation for Earth Sciences which contributed to his stay a t  the Institute of 
Geophysics and Planetary Physics, University of California, San Diego, where this 
paper was prepared. 
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